SU-E-T-476: GPU-Based Monte Carlo Radiotherapy Dose Calculation Using Phase- Space Sources.

نویسندگان

  • R Townson
  • Xun Jia
  • S Zavgorodni
  • S Jiang
چکیده

PURPOSE To design an efficient method for utilizing phase-space source models in the GPU-based Monte Carlo (MC) dose calculation engine gDPM. METHODS In GPU-based MC algorithms, particles are transported in parallel on different threads. Particles of different types and energies can require significantly different execution times. This can cause "thread divergence" and lower efficiency when source particles are read sequentially from a phase-space file. We have developed a strategy for utilizing phase- space files in a GPU compatible manner whereby the particles are grouped into phase-space-lets (PSLs) by type, energy, and location in the phase- space plane. This allows for dose calculations using only particles inside the field opening defined by the secondary collimators. For validation, the gDPM PSL implementation is compared with DOSXYZnrc using a BEAMnrc phase-space source model as input. RESULTS Two phase-spaces were generated using a BEAMnrc head model of a 6MV Varian Clinac 21EX, one above the upper jaws used to generate PSLs for gDPM and the other below the lower jaws used for DOSXYZnrc dose calculation. Profiles and depth dose curves for a variety of field sizes were generated in a water phantom. The agreement between gDPM and DOSXYZnrc is within 2% for all field sizes. For the 10 cm × 10 cm field, the calculation times of 650 million histories were 147 CPU hours and 54 GPU seconds for DOSXYZnrc and gDPM, respectively. In addition, we have tested the gDPM PSL implementation for dose calculation in a realistic 7-field IMRT tongue treatment plan. The calculation times were 59 CPU-hours and 66 GPU- seconds for DOSXYZnrc and gDPM for 485 million histories, respectively. Gamma pass rate for the two dose distributions was 99.54% for 3 mm/3% criteria within the 10% isodose. CONCLUSIONS Methods for the efficient use of phase-space sources for GPU-based MC dose calculations have been developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Multiple-source models for electron beams of a medical linear accelerator using BEAMDP computer code.

AIM The aim of this work was to develop multiple-source models for electron beams of the NEPTUN 10PC medical linear accelerator using the BEAMDP computer code. BACKGROUND One of the most accurate techniques of radiotherapy dose calculation is the Monte Carlo (MC) simulation of radiation transport, which requires detailed information of the beam in the form of a phase-space file. The computing...

متن کامل

A GPU-Based Track-Repeating Algorithm for Dose Calculation for Photon Radiotherapy

An essential ingredient in radiotherapy is the calculation of the dose to be delivered to the patient. Analytical algorithms are commonly used for such a task, however their accuracy is not always satisfactory. Monte Carlo techniques provide higher accuracy, but they often require large computational times. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for...

متن کامل

Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport.

Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the dose planning me...

متن کامل

GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.

Monte Carlo (MC) simulation is commonly considered to be the most accurate dose calculation method in radiotherapy. However, its efficiency still requires improvement for many routine clinical applications. In this paper, we present our recent progress toward the development of a graphics processing unit (GPU)-based MC dose calculation package, gDPM v2.0. It utilizes the parallel computation ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 58 12  شماره 

صفحات  -

تاریخ انتشار 2012